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Other Global Optimization:

▪ Constant Propagation

▪ Dead-code elimination

▪ Liveness analysis

▪ Common subexpression elimination

▪ Loop optimization



Local Optimization 

▪ Recall the simple basic-block optimizations
▪ Constant propagation 
▪ Dead code elimination

X := 3 
Y := Z * W 
Q := X + Y 

X := 3 
Y := Z * W 
Q := 3 + Y 

Y := Z * W 
Q := 3 + Y 



Global Optimization 

▪ These optimizations can be extended to an entire control-flow graph 

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X



Global Optimization 

▪ These optimizations can be extended to an entire control-flow graph 

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * 3



Correctness

▪ How do we know it is OK to globally propagate constants? 

▪ There are situations where it is incorrect: 

Y := 0

X := 3
B > 0

Y := Z + W
X := 4

A := 2 * X



Correctness (cont..)

To replace a use of x by a constant k we must know that: 
On every path to the use of x, the last assignment to x is 

x := k

▪ The correctness condition is not trivial to check 

▪ “All paths” includes paths around loops and through branches of conditionals 

▪ Checking the condition requires global analysis 
▪ An analysis of the entire control-flow graph 



Global Analysis 

▪ Global optimization tasks share several traits: 
▪ The optimization depends on knowing a property X at a particular 

point in program execution 
▪ Proving X at any point requires knowledge of the entire program 
▪ It is OK to be conservative. If the optimization requires X to be true, 

then want to know either 
▪ X is definitely true 
▪ Don’t know if X is true 
▪ It is always safe to say “don’t know”



Global Analysis (cont..) 

▪ Global dataflow analysis is a standard technique for solving problems 
with these characteristics 

▪ Global constant propagation is one example of an optimization that 
requires global dataflow analysis 



Global Constant Propagation (Cont.) 

▪ To make the problem precise, we associate one of the following values 
with X at every program point 

value interpretation
        (“bottom”) This statement never 

executes 
 c X = constant c 
 T (“top”) X is not a constant 

⊥



Example

Y := 0

X := 3
B > 0

Y := Z + W
X := 4

A := 2 * X

X = T

X = 3
X = 3

X = 3

X = 4 X = 3
X = T

X = T



Using the Information 

▪ Given global constant information, it is easy to perform the optimization 
▪ Simply inspect the x = ? associated with a statement using x 
▪ If x is constant at that point replace that use of x by the constant 

▪ But how do we compute the properties x = ?



Using the Information 

▪ The idea is to “push” or “transfer” information from one statement to the 
next 

▪ For each statement s, we compute information about the value of x 
immediately before and after s 

C(s,x,in)  = value of x before s 
C(s,x,out) = value of x after s 



Transfer Functions 

▪ Define a transfer function that transfers information one statement to 
another 

▪ In the following rules, let statement s have immediate predecessor 
statements p1,…,pn 



Rule 1

s

x=? x=? x=T x=?

x=T

if C(pi , x, out) = T for any i, then C(s, x, in) = T



Rule 2

s

x=c x=? x=d x=?

x=T

C(pi , x, out) = c & C(pj, x, out) = d & d <> c 
then C(s, x, in) = T



Rule 3

s

x=𝑐 x=⊥ x=𝑐 x=⊥

x=𝑐

if C(pi , x, out) = c or  for all i, 
then C(s, x, in) = c

⊥



Rule 4

s

x=⊥ x=⊥ x=⊥ x=⊥

x=⊥

if C(pi , x, out) =  for all i, 
then C(s, x, in) = 

⊥
⊥



▪Rules 1-4 relate the out of one statement to the in of the next 
statement 

▪Now we need rules relating the in of a statement to the out of the 
same statement



Rule 5

s

x=⊥

x=⊥

C(s, x, out) = 
 if C(s, x, in) = 

⊥
⊥



Rule 6

x := c

x=?

x=𝑐

C(x := c, x, out) = c if c is a constant



Rule 7

x := f(…)

x=?

x=𝑇

C(x := f(…), x, out) = T



Rule 8

y := …

x=𝑎

x=𝑎

C(y := …, x, out) = C(y := …, x, in) if x <> y 



Common subexpression elimination

▪ Example:
a := b + c a := b + c
c := b + c  ⇒ c := a
d := b + c d := b + c

▪ Example in array index calculations
▪ c[i+1] := a[i+1] + b[i+1]
▪ During address computation, i+1 should be reused
▪ Not visible in high level code, but in intermediate code



Code Elimination

▪ Unreachable code elimination
▪ Construct the control flow graph
▪ Unreachable code block will not have an incoming edge
▪ After constant propagation/folding, unreachable branches can be eliminated

▪ Dead code elimination
▪ Ineffective statements

▪ x := y + 1 (immediately redefined, eliminate!)
▪ y := 5  ⇒ y := 5
▪ x := 2 * z x := 2 * z

▪ A variable is dead if it is never used after last definition
▪ Eliminate assignments to dead variables

▪ Need to do data flow analysis to find dead variables



Function Optimization

▪ Function inlining
▪ Replace a function call with the body of the function
▪ Save a lot of copying of the parameters, return address, etc.

▪ Function cloning
▪ Create specialized code for a function for different calling parameters



Loop Optimization

▪ Loop optimization
▪ Consumes 90% of the execution time

⇒ a larger payoff to optimize the code within a loop

▪ Techniques
▪ Loop invariant detection and code motion
▪ Induction variable elimination
▪ Strength reduction in loops
▪ Loop unrolling
▪ Loop peeling
▪ Loop fusion



Loop Optimization

▪ Loop invariant detection
▪ If the result of a statement or expression does not change within a loop, and it has no 

external side-effect
▪ Computation can be moved to outside of the loop
▪ Example

for (i=0; i<n; i++) a[i] := a[i] + x/y;


▪ Three address code
   for (i=0; i<n; i++) { c := x/y; a[i] := a[i] + c; }

⇒ c := x/y; 
     for (i=0; i<n; i++) a[i] := a[i] + c;



▪ Code Motion
▪ Reduce frequency with which computation performed

▪ If it will always produce same result
▪ Especially moving code out of loop

for (i = 0; i < n; i++)

  for (j = 0; j < n; j++)

    a[n*i + j] = b[j];

for (i = 0; i < n; i++) {

  int ni = n*i;

  for (j = 0; j < n; j++)

    a[ni + j] = b[j];

}

Loop Optimization



▪ Strength reduction in loops
▪ Replace costly operation with simpler one
▪ Shift, add instead of multiply or divide

16*x	 -->	 x << 4


▪ Depends on cost of multiply or divide instruction
▪ Recognize sequence of products

for (i = 0; i < n; i++)

  for (j = 0; j < n; j++)

    a[n*i + j] = b[j];

int ni = 0;

for (i = 0; i < n; i++) {

  for (j = 0; j < n; j++)

    a[ni + j] = b[j];

  ni += n;

}

Loop Optimization



▪ Strength reduction in loops
▪ Replace costly operation with simpler one
▪ Shift, add instead of multiply or divide

16*x	 -->	 x << 4


▪ Depends on cost of multiply or divide instruction
▪ Recognize sequence of products

Loop Optimization

s := 0;  

for (i=0; i<n; i++) 

{ 

  v := 4 * i;  

  s := s + v; 

}

s := 0;  

for (i=0; i<n; i++) 

{ 

   v := v + 4;  

   s := s + v;
}



▪ Induction variable elimination
▪ If there are multiple induction variables in a loop, can eliminate the ones which are used 

only in the test condition
▪ Example

s := 0;  for (i=0; i<n; i++) { s := 4 * i; … }   -- i is not referenced in loop
⇒ s := 0;  e := 4*n; while (s < e) { s := s + 4; }

Loop Optimization

s := 0;  

for (i=0; i<n; i++) 
{ s := 4 * i; … }   

-- i is not referenced in 
loop

s := 0;  

e := 4*n; 

while (s < e) { 

 s := s + 4; 

}



Code Optimization Techniques

▪ Loop unrolling
▪ Execute loop body multiple times at each iteration
▪ Get rid of the conditional branches, if possible
▪ Allow optimization to cross multiple iterations of the loop

▪ Especially for parallel instruction execution
▪ Space time tradeoff

▪ Increase in code size, reduce some instructions

▪ Loop peeling
▪ Similar to unrolling
▪ But unroll the first and/or last few iterations



Loop Optimization

▪ Loop fusion
▪ Example

for i=1 to N do
A[i] = B[i] + 1

endfor
for i=1 to N do

C[i] = A[i] / 2
endfor
for i=1 to N do

D[i] = 1 / C[i+1]
endfor

Before Loop Fusion

for i=1 to N do

	 A[i] = B[i] + 1

	 C[i] = A[i] / 2

	 D[i] = 1 / 

C[i+1]

endfor




Loop Optimization

▪ Loop fusion
▪ Example

for i=1 to N do
A[i] = B[i] + 1

endfor
for i=1 to N do

C[i] = A[i] / 2
endfor
for i=1 to N do

D[i] = 1 / C[i+1]
endfor

Before Loop Fusion

for i=1 to N do

	 A[i] = B[i] + 1

	 C[i] = A[i] / 2

	 D[i] = 1 /C[i+1]

endfor


 Is this correct?

 Actually, cannot fuse

 the third loop



Limitations of Compiler Optimization

▪ Operate Under Fundamental Constraint
▪ Must not cause any change in program behavior under any possible condition
▪ Often prevents it from making optimizations when would only affect behavior under 

pathological conditions.

▪ Behavior that may be obvious to the programmer can  be obfuscated by languages and 
coding styles
▪ e.g., data ranges may be more limited than variable types suggest

▪ Most analysis is performed only within procedures
▪ whole-program analysis is too expensive in most cases

▪ Most analysis is based only on static information
▪ compiler has difficulty anticipating run-time inputs

▪ When in doubt, the compiler must be conservative


