
COMPILER OPTIMIZATION
Baishakhi Ray

Programming Languages & Translators

These slides are motivated from Prof. Alex Aiken and Prof. Calvin Lin

Optimization

▪ Optimization is our last compiler phase

▪Most complexity in modern compilers is in the optimizer
▪ Also by far the largest phase

▪ Optimizations are often applied to intermediate representations of code

When should we perform optimizations?

▪ On AST
▪ Pro: Machine independent
▪ Con: Too high level

▪ On assembly language
▪ Pro: Exposes optimization opportunities
▪ Con: Machine dependent
▪ Con: Must reimplement optimizations when retargetting

▪ On an intermediate language
▪ Pro: Machine independent
▪ Pro: Exposes optimization opportunities

Intermediate Languages

▪ Intermediate language = high-level assembly
▪ Uses register names, but has an unlimited number
▪ Uses control structures like assembly language
▪ Uses opcodes but some are higher level

▪ E.g., push translates to several assembly instructions
▪ Most opcodes correspond directly to assembly opcodes

Three-Address Intermediate Code

▪ Each instruction is of the form
x := y op z (binary operation)
x := op y (unary operation)

▪ y and z are registers or constants
▪ Common form of intermediate code

▪ The expression x + y * z is translated
t1 := y * z
t2 := x + t1

▪ Each subexpression has a “name”

Optimization Overview

▪ Optimization seeks to improve a program’s resource utilization
▪ Execution time (most often)
▪ Code size
▪ Network messages sent, etc.

▪ Optimization should not alter what the program computes
▪ The answer must still be the same

A Classification of Optimizations

▪ For languages like C there are three granularities of optimizations
1. Local optimizations

▪ Apply to a basic block in isolation
2. Global optimizations

▪ Apply to a control-flow graph (method body) in isolation
3. Inter-procedural optimizations

▪ Apply across method boundaries

▪ Most compilers do (1), many do (2), few do (3)

Cost of Optimizations

▪ In practice, a conscious decision is made not to implement the fanciest optimization
known

▪ Why?
▪ Some optimizations are hard to implement
▪ Some optimizations are costly in compilation time
▪ Some optimizations have low benefit
▪ Many fancy optimizations are all three!

▪ Goal: Maximum benefit for minimum cost

Local Optimizations

▪ The simplest form of optimizations

▪ No need to analyze the whole procedure body
▪ Just the basic block in question

▪ Example: algebraic simplification

Algebraic Simplification

▪ Some statements can be deleted
x := x + 0
x := x * 1

▪ Some statements can be simplified
x := x * 0 ⇒ x := 0

y := y ** 2 ⇒ y := y * y

x := x * 8 ⇒ x := x << 3

x := x * 15 ⇒ t := x << 4; x := t - x

 (on some machines << is faster than *; but not on all!)

Constant Folding

▪ Operations on constants can be computed at compile time
▪ If there is a statement x := y op z
▪ And y and z are constants
▪ Then y op z can be computed at compile time

▪ Example: x := 2 + 2 ⇒ x := 4

▪ Example: if 2 < 0 jump L can be deleted

▪ When might constant folding be dangerous?

▪ Floating point errors in cross-architecture compilation

Flow of Control Optimizations

▪ Eliminate unreachable basic blocks:
▪ Code that is unreachable from the initial block

▪ E.g., basic blocks that are not the target of any jump or “fall through” from a conditional

▪ Removing unreachable code makes the program smaller
▪ And sometimes also faster

▪ Due to memory cache effects (increased spatial locality)

Single Assignment Form

▪ Some optimizations are simplified if each register occurs only once on the left-hand
side of an assignment

▪ Rewrite intermediate code in single assignment form
x := z + y b := z + y
a := x ⇒ a := b

x := 2 * x x := 2 * b

(b is a fresh register)

▪ More complicated in general, due to loops

Static Single Assignment (SSA) Form

▪ Idea
▪ Each variable has only one static definition
▪ Makes it easier to reason about values instead of variables
▪ The point of SSA form is to represent use-def information explicitly

▪ Transformation to SSA
▪ Rename each definition
▪ Rename all uses reached by that definition

▪ Example:

 v := …
… := … v …
v := …
… := … v …
v := …
… := … v …

v0 := …
… := … v0 …
v1 := …
… := … v1 …
v2 := …
… := … v2 …

SSA and Control Flow

▪ Problem : A use may be reached by several definitions

SSA and Control Flow (cont)

▪ Merging Definitions
▪ -functions merge multiple reaching definitions∅

SSA and Control Flow (cont)

▪ Merging Definitions
▪ -functions merge multiple reaching definitions∅

SSA vs. use-def chain

▪ SSA form is more constrained

▪ Advantages of SSA
▪ More compact
▪ Some analyses become simpler when each use has only one def
▪ Value merging is explicit
▪ Usually, easier to update and manipulate

▪ Furthermore
▪ Eliminates false dependences (simplifying context)

SSA vs. use-def chain

▪ Worst case du-chains?

switch (c1) {
case 1: x = 1; break;
case 2: x = 2; break;
case 3: x = 3; break;

}
switch (c2) {

case 1: y1 = x; break;
case 2: y2 = x; break;
case 3: y3 = x; break;
case 4: y4 = x; break;

}

m defs and n uses leads to m x n du
chains

Transformation to SSA Form

▪ Two steps
▪ Insert -functions
▪ Rename variables

▪ Basic Rule of Placing -Functions?
▪ If two distinct (non-null) paths x->z and y->z converge at node z, and nodes x and y contain

definitions of variable v, then we insert a -function for v at z

∅

∅

∅

Approaches to Placing -Functions∅

▪ Minimal
▪ As few as possible subject to the basic rule

▪ Briggs-Minimal
▪ Same as minimal, except v must be live across some edge of the CFG

▪ Briggs Minimal will not place a function in this case because v is not live across any
CFG edge.

▪ Exploits the short lifetimes of many temporary variables

∅

SSA: Variable Renaming

▪ When we see a variable on the LHS, create a new name for it

▪ When we see a variable on the RHS, use appropriate subscript

▪ Easy for straight forward code

▪ Harder when there’s control flow
▪ For each use of x, find the definition of x that dominates it

Common Subexpression Elimination

▪ If
▪ Basic block is in single assignment form
▪ A definition x := is the first use of x in a block

▪ Then
▪ When two assignments have the same rhs, they compute the same value

▪ Example:
x := y + z x := y + z
… ⇒ …

w := y + z w := x
(the values of x, y, and z do not change in the … code)

Copy Propagation

▪ If w := x appears in a block, replace subsequent uses of w with uses of x
▪ Assumes single assignment form

▪ Example:
b := z + y b := z + y
a := b ⇒ a := b

x := 2 * a x := 2 * b

▪ Only useful for enabling other optimizations
▪ Constant folding
▪ Dead code elimination

Copy Propagation and Constant Folding

▪ Example:
a := 5 a := 5
x := 2 * a ⇒ x := 10

y := x + 6 y := 16
t := x * y t := x << 4

Copy Propagation and Dead Code Elimination

▪ If
▪ w := rhs appears in a basic block
▪ w does not appear anywhere else in the program

▪ Then the statement w := rhs is dead and can be eliminated
▪ Dead = does not contribute to the program’s result
▪ Example: (a is not used anywhere else)
x := z + y b := z + y b := z + y
a := x ⇒ a := b ⇒ x := 2 * b

x := 2 * a x := 2 * b

Applying Local Optimizations

▪ Each local optimization does little by itself

▪ Typically optimizations interact
▪ Performing one optimization enables another

▪ Optimizing compilers repeat optimizations until no improvement is possible
▪ The optimizer can also be stopped at any point to limit compilation time

An Example

▪ Initial code:
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f

An Example

▪ Algebraic optimization:
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f

a := x * x
b := 3
c := x
d := c * c
e := b << 1
f := a + d
g := e * f

An Example

▪ Copy Propagation:
a := x * x
b := 3
c := x
d := c * c
e := b << 1
f := a + d
g := e * f

a := x * x
b := 3
c := x
d := x * x
e := 3 << 1
f := a + d
g := e * f

An Example

▪ Constant folding:
a := x * x
b := 3
c := x
d := x * x
e := 3 << 1
f := a + d
g := e * f

a := x * x
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f

An Example

▪ Common subexpression elimination:
a := x * x
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f

a := x * x
b := 3
c := x
d := a
e := 6
f := a + d
g := e * f

An Example

▪ Copy propagation:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + d
g := e * f

a := x * x
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f

An Example

▪ Dead code elimination:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f

a := x * x

f := a + a
g := 6 * f

Peephole Optimizations on Assembly Code

▪ These optimizations work on intermediate code
▪ Target independent
▪ But they can be applied on assembly language also

▪ Peephole optimization is effective for improving assembly code
▪ The “peephole” is a short sequence of (usually contiguous) instructions
▪ The optimizer replaces the sequence with another equivalent one (but faster)

Peephole Optimizations (Cont.)

▪ Write peephole optimizations as replacement rules

i1, …, in → j1, …, jm

 where the rhs is the improved version of the lhs

▪ Example:

move $a $b, move $b $a → move $a $b
▪ Works if move $b $a is not the target of a jump

▪ Another example

addiu $a $a i, addiu $a $a j → addiu $a $a i+j

Peephole Optimizations (Cont.)

▪ Many (but not all) of the basic block optimizations can be cast as peephole
optimizations
▪ Example: addiu $a $b 0 → move $a $b
▪ Example: move $a $a → –
▪ These two together eliminate addiu $a $a 0

▪ As for local optimizations, peephole optimizations must be applied repeatedly for
maximum effect

