
COMPILER OPTIMIZATION
Baishakhi Ray

Programming Languages & Translators 

These slides are motivated from Prof. Alex Aiken and Prof. Calvin Lin



Optimization

▪ Optimization is our last compiler phase 

▪Most complexity in modern compilers is in the optimizer 
▪ Also by far the largest phase 

▪ Optimizations are often applied to intermediate representations of code



When should we perform optimizations? 

▪ On AST 
▪ Pro: Machine independent 
▪ Con: Too high level 

▪ On assembly language 
▪ Pro: Exposes optimization opportunities 
▪ Con: Machine dependent 
▪ Con: Must reimplement optimizations when retargetting 

▪ On an intermediate language 
▪ Pro: Machine independent 
▪ Pro: Exposes optimization opportunities 



Intermediate Languages

▪ Intermediate language = high-level assembly 
▪ Uses register names, but has an unlimited number 
▪ Uses control structures like assembly language 
▪ Uses opcodes but some are higher level 

▪ E.g., push translates to several assembly instructions 
▪ Most opcodes correspond directly to assembly opcodes



Three-Address Intermediate Code

▪ Each instruction is of the form 
x := y op z (binary operation)
x := op y   (unary operation)

▪ y and z are registers or constants 
▪ Common form of intermediate code 

▪ The expression x + y * z is translated 
t1 := y * z 
t2 := x + t1 

▪ Each subexpression has a “name”



Optimization Overview

▪ Optimization seeks to improve a program’s resource utilization 
▪ Execution time (most often) 
▪ Code size 
▪ Network messages sent, etc. 

▪ Optimization should not alter what the program computes 
▪ The answer must still be the same



A Classification of Optimizations

▪ For languages like C there are three granularities of optimizations 
1. Local optimizations 

▪ Apply to a basic block in isolation 
2. Global optimizations 

▪ Apply to a control-flow graph (method body) in isolation 
3. Inter-procedural optimizations 

▪ Apply across method boundaries 

▪ Most compilers do (1), many do (2), few do (3)



Cost of Optimizations

▪ In practice, a conscious decision is made not to implement the fanciest optimization 
known 

▪ Why? 
▪ Some optimizations are hard to implement 
▪ Some optimizations are costly in compilation time 
▪ Some optimizations have low benefit 
▪ Many fancy optimizations are all three! 

▪ Goal: Maximum benefit for minimum cost



Local Optimizations

▪ The simplest form of optimizations 

▪ No need to analyze the whole procedure body 
▪ Just the basic block in question 

▪ Example: algebraic simplification



Algebraic Simplification

▪ Some statements can be deleted 
x := x + 0 
x := x * 1 

▪ Some statements can be simplified 
x := x * 0  ⇒ x := 0 

y := y ** 2 ⇒ y := y * y 

x := x * 8  ⇒ x := x << 3 

x := x * 15 ⇒ t := x << 4; x := t - x 

       (on some machines << is faster than *; but not on all!)



Constant Folding

▪ Operations on constants can be computed at compile time 
▪ If there is a statement x := y op z 
▪ And y and z are constants 
▪ Then y op z can be computed at compile time 

▪ Example: x := 2 + 2 ⇒ x := 4 

▪ Example: if 2 < 0 jump L can be deleted 

▪ When might constant folding be dangerous?

▪ Floating point errors in cross-architecture compilation



Flow of Control Optimizations

▪ Eliminate unreachable basic blocks: 
▪ Code that is unreachable from the initial block 

▪ E.g., basic blocks that are not the target of any jump or “fall through” from a conditional 

▪ Removing unreachable code makes the program smaller 
▪ And sometimes also faster 

▪ Due to memory cache effects (increased spatial locality)



Single Assignment Form

▪ Some optimizations are simplified if each register occurs only once on the left-hand 
side of an assignment 

▪ Rewrite intermediate code in single assignment form 
x := z + y b := z + y 
a := x ⇒ a := b 

x := 2 * x x := 2 * b 

(b is a fresh register) 

▪ More complicated in general, due to loops



Static Single Assignment (SSA) Form

▪ Idea 
▪ Each variable has only one static definition 
▪ Makes it easier to reason about values instead of variables 
▪ The point of SSA form is to represent use-def information explicitly 

▪ Transformation to SSA 
▪ Rename each definition 
▪ Rename all uses reached by that definition

▪ Example: 

 v := …
… := … v …
v := …
… := … v …
v := …
… := … v …

v0 := …
… := … v0 …
v1 := …
… := … v1 …
v2 := …
… := … v2 …



SSA and Control Flow

▪ Problem : A use may be reached by several definitions



SSA and Control Flow (cont)

▪ Merging Definitions 
▪  -functions merge multiple reaching definitions∅



SSA and Control Flow (cont)

▪ Merging Definitions 
▪  -functions merge multiple reaching definitions∅



SSA vs. use-def chain

▪ SSA form is more constrained 

▪ Advantages of SSA 
▪ More compact 
▪ Some analyses become simpler when each use has only one def 
▪ Value merging is explicit 
▪ Usually, easier to update and manipulate

▪ Furthermore 
▪ Eliminates false dependences (simplifying context)



SSA vs. use-def chain

▪ Worst case du-chains?

switch (c1) { 
case 1: x = 1; break; 
case 2: x = 2; break; 
case 3: x = 3; break; 

} 
switch (c2) { 

case 1: y1 = x; break; 
case 2: y2 = x; break; 
case 3: y3 = x; break; 
case 4: y4 = x; break;

}

m defs and n uses leads to m x n du 
chains



Transformation to SSA Form

▪ Two steps 
▪ Insert -functions 
▪ Rename variables

▪ Basic Rule of Placing -Functions?
▪ If two distinct (non-null) paths x->z and y->z converge at node z, and nodes x and y contain 

definitions of variable v, then we insert a -function for v at z

∅

∅

∅



Approaches to Placing -Functions∅

▪ Minimal
▪ As few as possible subject to the basic rule 

▪ Briggs-Minimal
▪ Same as minimal, except v must be live across some edge of the CFG

▪ Briggs Minimal will not place a  function in this case because v is not live across any 
CFG edge. 

▪ Exploits the short lifetimes of many temporary variables

∅



SSA: Variable Renaming

▪ When we see a variable on the LHS, create a new name for it 

▪ When we see a variable on the RHS, use appropriate subscript

▪ Easy for straight forward code

▪ Harder when there’s control flow 
▪ For each use of x, find the definition of x that dominates it



Common Subexpression Elimination

▪ If 
▪ Basic block is in single assignment form 
▪ A definition x := is the first use of x in a block 

▪ Then 
▪ When two assignments have the same rhs, they compute the same value 

▪ Example: 
x := y + z x := y + z
… ⇒ … 

w := y + z w := x 
(the values of x, y, and z do not change in the … code)



Copy Propagation

▪ If w := x appears in a block, replace subsequent uses of w with uses of x 
▪ Assumes single assignment form 

▪ Example: 
b := z + y b := z + y 
a := b ⇒ a := b 

x := 2 * a x := 2 * b 

▪ Only useful for enabling other optimizations 
▪ Constant folding 
▪ Dead code elimination



Copy Propagation and Constant Folding

▪ Example: 
a := 5 a := 5 
x := 2 * a ⇒ x := 10 

y := x + 6 y := 16 
t := x * y t := x << 4



Copy Propagation and Dead Code Elimination

▪ If 
▪ w := rhs appears in a basic block 
▪ w does not appear anywhere else in the program 

▪ Then the statement w := rhs is dead and can be eliminated 
▪ Dead = does not contribute to the program’s result 
▪ Example: (a is not used anywhere else) 
x := z + y b := z + y b := z + y 
a := x ⇒ a := b ⇒ x := 2 * b 

x := 2 * a x := 2 * b



Applying Local Optimizations

▪ Each local optimization does little by itself 

▪ Typically optimizations interact 
▪ Performing one optimization enables another 

▪ Optimizing compilers repeat optimizations until no improvement is possible 
▪ The optimizer can also be stopped at any point to limit compilation time



An Example

▪ Initial code: 
a := x ** 2 
b := 3 
c := x 
d := c * c 
e := b * 2 
f := a + d 
g := e * f



An Example

▪ Algebraic optimization: 
a := x ** 2 
b := 3 
c := x 
d := c * c 
e := b * 2 
f := a + d 
g := e * f

a := x * x 
b := 3 
c := x 
d := c * c 
e := b << 1 
f := a + d 
g := e * f



An Example

▪ Copy Propagation: 
a := x * x 
b := 3 
c := x 
d := c * c 
e := b << 1 
f := a + d 
g := e * f

a := x * x 
b := 3 
c := x 
d := x * x 
e := 3 << 1 
f := a + d 
g := e * f



An Example

▪ Constant folding:  
a := x * x 
b := 3 
c := x 
d := x * x 
e := 3 << 1 
f := a + d 
g := e * f

a := x * x 
b := 3 
c := x 
d := x * x 
e := 6
f := a + d 
g := e * f



An Example

▪ Common subexpression elimination:  
a := x * x 
b := 3 
c := x 
d := x * x 
e := 6
f := a + d 
g := e * f

a := x * x 
b := 3 
c := x 
d := a
e := 6
f := a + d 
g := e * f



An Example

▪ Copy propagation:  
a := x * x 
b := 3 
c := x 
d := a
e := 6
f := a + d 
g := e * f

a := x * x 
b := 3 
c := x 
d := a
e := 6
f := a + a 
g := 6 * f



An Example

▪ Dead code elimination:  
a := x * x 
b := 3 
c := x 
d := a
e := 6
f := a + a 
g := 6 * f

a := x * x 

f := a + a 
g := 6 * f



Peephole Optimizations on Assembly Code 

▪ These optimizations work on intermediate code 
▪ Target independent 
▪ But they can be applied on assembly language also 

▪ Peephole optimization is effective for improving assembly code 
▪ The “peephole” is a short sequence of (usually contiguous) instructions 
▪ The optimizer replaces the sequence with another equivalent one (but faster) 



Peephole Optimizations (Cont.) 

▪ Write peephole optimizations as replacement rules 

i1, …, in → j1, …, jm 

   where the rhs is the improved version of the lhs 

▪ Example: 

move $a $b, move $b $a → move $a $b 
▪ Works if move $b $a is not the target of a jump 

▪ Another example 

addiu $a $a i, addiu $a $a j → addiu $a $a i+j



Peephole Optimizations (Cont.) 

▪ Many (but not all) of the basic block optimizations can be cast as peephole 
optimizations 
▪ Example: addiu $a $b 0 → move $a $b 
▪ Example: move $a $a → – 
▪ These two together eliminate addiu $a $a 0 

▪ As for local optimizations, peephole optimizations must be applied repeatedly for 
maximum effect


