
PROGRAM ANALYSIS
Baishakhi Ray

Programming Languages & Translators

What is Program Analysis

▪ A process of automatically analyzing a program behavior

▪ Different program properties can be analyzed for

▪ Program Optimization

▪ Program Correctness

Example:

 int foo(void)

 {

 int a = 24;

 if (a > 25)

 {
 return(25);
 a = 25
 }
 return(a);
 b = 24;
 return(b);

}

Underlined code is dead code

- How/Whether a statement will be executed?

- Control Flow Analysis

- How the values propagate?

- Data Flow Analysis

Control Flow Analysis

▪ Representation of Control Flow: Control Flow Graph (CFG)

▪ Nodes represent statements (low-level linear IR)

▪ Edges represent explicit flow of control

Control Flow Graph

1. a = 0

2. b = a * b

3. L1: c = b/d

4. if c < x goto L2

5. e = b/c

6. f = e + 1

7. L2: g = f

8. h = t -g

9. if e > 0 goto L3

10. goto L1

11. L3: return

Yes

Control Flow Graph

1. a = 0

2. b = a * b

3. L1: c = b/d

4. if c < x goto L2

5. e = b/c

6. f = e + 1

7. L2: g = f

8. h = t -g

9. if e > 0 goto L3

10. goto L1

11. L3: return

 a = 0
 b = a * b

e := b / c
f : e + 1

g := f
h := t – g
if e > 0 ?

goto return

c := b / d
if c < x?

1

3

5

7

1110

Yes No

No

Yes

Basic Blocks (BB)

▪ A sequence of straight line code that can be
entered only at the beginning and exited only

▪ Building BB

▪ Identify Leaders

▪ The first instruction in a procedure, or

▪ The target of any branch, or

▪ An instruction immediately following a
branch (implicit target)

▪ Gobble all subsequent instructions until the
next leader

 a = 0
 b = a * b

e := b / c
f : e + 1

g := f
h := t – g
if e > 0 ?

goto return

c := b / d
if c < x?

1

3

5

7

1110

Yes No

No

Basic Blocks (BB)

▪ Leaders:

▪ {1, 3, 5, 7, 10, 11}

▪ Blocks

– {1, 2}

– {3, 4}

– {5, 6}

– {7, 8, 9}

– {10}

– {11}

 a = 0
 b = a * b

e := b / c
f : e + 1

g := f
h := t – g
if e > 0 ?

goto return

c := b / d
if c < x?

1

3

5

7

1110

Yes No

No

Constructing CFG

▪ Each CFG node represents a basic block

▪ There is an edge from node i to j if

▪ Last statement of block i branches to the first statement
of j, or

▪ Block i does not end with a branch and is immediately
followed in program order by block j (fall through)

 a = 0
 b = a * b

e := b / c
f : e + 1

g := f
h := t – g
if e > 0 ?

goto return

c := b / d
if c < x?

1

3

5

7

1110

Yes No

No

goto L1:

L1

i

j

goto L1:

L1

i

j

CFG Paths

▪ Consider a flow graph G= (N, E).

▪ A sequence of k edges, k>0, () , denotes a path of length k through
the flow graph if the following sequence condition holds.

▪ Given that , , , and are nodes belonging to N, and 0< i<k, if , and
 , then .

▪ Complete Path: a path from start to exit

▪ Subpath: a subsequence of complete path

e1, e2, e3, ek

np nq nr ns ei = (np, nq)
ei + 1 = (nr, ns) nq = nr

CFG Paths

▪ There can be many distinct paths in a program

▪ A program with no condition will have only one path

▪ Each additional condition increases the number of path by at least one

▪ Depending on their location and nature, condition can have multiplicative effect on the
number of path.

Looping

backedge

entry edge

Loop

Exit edge

• Loop: Strongly connected component of CFG

• Entry Edge: Source not in loop but target in the loop

• Exit Edge: Source in the loop but target not in the
loop

• Header node: Target of loop entry edge

• Back edge: Target is loop header, and source is in the
loop

• Tail node: source of back edge

• Preheader: Single node that is source to the loop
entry edge

• Nested Loop: Loop whose header is inside another
loop

Looping

backedge

entry edge

Loop

Exit edge

• backedges indicate that we might need
to traverse the CFG more than once for
data flow analysis

• Not all loops have preheaders

– Sometimes it is useful to create them.
Without preheader node, there can be
multiple entry edges. With single
preheader node, there is only one entry
edge.

Back Edge

Identifying loop

▪ Why is it important?

▪ Most execution time spent in loops, so optimizing loops will often give most
benefit

▪ Exploit hierarchical structure of programs

▪ Identify dominators to discover loops	

D
ragon Star 2017

16

Dominator

X dominates Y if all possible program paths from START to Y have to
pass X.

D
ragon Star 2017

17

Dominator

X strictly dominates Y if X dominates Y and X!=Y

1: sum=0

2: i=1

3: while (i<N) do

4:	 i=i+1

5:	 sum=sum+i

 endwhile

6: print(sum)

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: sum=sum+i

6: print (sum)SDOM(6)={1,3} –

D
ragon Star 2017

18

Dominator

X is the immediate dominator of Y if X is the last dominator of Y along a
path from Start to Y.

1: sum=0

2: i=1

3: while (i<N) do

4:	 i=i+1

5:	 sum=sum+i

 endwhile

6: print(sum)

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: sum=sum+i

6: print (sum)IDOM(6)={3} –

D
ragon Star 2017

19

Postdominator

X post-dominates Y if every possible program path from Y to End has to
pass X.

• Strict post-dominator, immediate post-dominance.

1: sum=0

2: i=1

3: while (i<N) do

4:	 i=i+1

5:	 sum=sum+i

 endwhile

6: print(sum)

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: sum=sum+i

6: print (sum)
SPDOM(4)={3,6} IPDOM(4)=3

D
ragon Star 2017

20

Back Edges

A back edge is an edge whose head dominates its tail

• Back edges often identify loops

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: sum=sum+i

6: print (sum)

D
ragon Star 2017

21

Program Dependence Graph

• The second widely used program representation.

• Nodes are constituted by statements instead of basic blocks.

• Two types of dependences between statements

• Data dependence

• Control dependence

D
ragon Star 2017

22

Data Dependence

X is data dependent on Y if (1) there is a variable v that is defined at Y
and used at X and (2) there exists a path of nonzero length from Y to X
along which v is not re-defined.

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: sum=sum+i

6: print (sum)–
–

–

–

D
ragon Star 2017

23

Control Dependence

Intuitively, Y is control-dependent on X iff X directly determines whether Y
executes (statements inside one branch of a predicate are usually control
dependent on the predicate)

- X is not strictly post-dominated by Y

- There exists a path from X to Y s.t. every node in the path other than X
and Y is post-dominated by Y

D
ragon Star 2017

24

Control Dependence - Example

1: sum=0

2: i=1

3: while (i<N) do

4:	 i=i+1

5:	 sum=sum+i

 endwhile

6: print(sum)

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: sum=sum+i

6: print (sum)

Y is control-dependent on X iff X directly determines whether Y executes

– X is not strictly post-dominated by Y

– There exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y

D
ragon Star 2017

25

1: sum=0

2: i=1

3: while (i<N) do

4:	 i=i+1

5:	 if (i%2==0)

6:	 continue;

7:	 sum=sum+i

 endwhile

8: print(sum)

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: if (i%2==0)

8: print (sum)

7: sum=sum+i

Control Dependence - Example

D
ragon Star 2017

26

Control Dependence is Tricky!

1: if (p1 || p2)

2: 	 s1;

3: s2;

1: ? p1

Can one statement control depends on two predicates?

1: ? p2

2: s1

3: s2

What if ?

1: if (p1 && p2)

2: 	 s1;

3: s2;

–

D
ragon Star 2017

27

The Use of PDG

A program dependence graph consists of control dependence graph and data
dependence graph.

D
ragon Star 2017

28

Call Graph (CG)

Each node represents a function; each edge represents a function
invocation

void A() {

 B();

 C();

}

void C () {

 D();

 A();

}

void B() {

L1: D();

L2: D();

}

void D () {

}

–A

–C–B

–D

–

