Programming Languages & Translators

Data Flow Analysis

Baishakhi Ray

Data flow analysis

* Derives information about the dynamic
behavior of a program by only examining
the static code

* Intraprocedural analysis

 Flow-sensitive: sensitive to the control
flow in a function

« Examples
— Live variable analysis
— Constant propagation
— Common subexpression elimination
— Dead code detection

c :=c+Db

:= b * 2

if a < 9 goto L1
return c

AN L b~ W
o
I

How many registers do we need?

Easy bound: # of used variables (3)
Need better answer

Dataflow Analysis AEplications

* Live Variable Analysis
« Efficient register allocation: optimization

» Reaching Definition Analysis
« Find usage of uninitialized variables: bug detection
* Dead-code elimination: optimization

 Available Expression Analysis
* Avoid recomputing expression: optimization

» Very Busy Expression Analysis
* Reduce code size: optimization

Data flow analysis (DFA)

Bl |a=10

B2 || if input() |»exit

B3

- Statically: finite program path
- Dynamically: can have infinitely many paths

* For each point in the program, DFA combines information of all instances
of the same program point

Example 1: Liveness Analysis

Liveness Analysis

Definition
-A variable is live at a particular point in the program if its value
at that point will be used in the future (dead, otherwise).

-To compute liveness at a given point, we need to look into the
future

Motivation: Register Allocation
-A program contains an unbounded number of variables
- Must execute on a machine with a bounded number of registers

-Two variables can use the same register if they are never in use at
the same time (i.e, never simultaneously live).

-Register allocation uses liveness information

Control Flow Graph

* Let’s consider CFG where nodes
contain program statement instead
of basic block.

 Example

. if a <9 goto L1
return c

!
1. a=0
2 b=;+1 <
3 c;;+b
4 a=b*2
5 ;;9

6. return c

Yes

Liveness by Example

* Live range of b

* Variable bisreadinline 4,sob
IS live on 3->4 edge

* bisalsoreadinline 3,sobis
live on (2->3) edge

* Line 2 assigns b, so value of b
on edges (1->2) and (5->2) are
not needed. So b is dead along
those edges.

* b’s live range is (2->3->4)

!
1. a=0
2. b=a+1
3 c="c+b
4 a=b*2
5 a"<9

6. return c

Yes

Liveness by Example

* Live range of a
* (1->2) and (4->5->2)
* ais dead on (2->3->4)

!
1. a=0
2. b=a+1
3 C;;+b
4 a=b*2
5 ;;9

6. return c

Yes

Terminology

* Flow graph terms

* A CFG node has out-edges that lead
to successor nodes and in-edges
that come from predecessor nodes

 pred[n] is the set of all
predecessors of node n

 succ[n] is the set of all successors
of node n

Examples
— Qut-edges of nhode 5: (5--6) and (5--2)
- succ[5] = {2,6}

- Brédh = s

A

!
1. a=0
2 b=;+1
3 c;;+b
4 a=b*2
5 ;;9

6. return c

Yes

Uses and Defs

Def (or definition)
- An assignment of a value to a variable
- def[v] = set of CFG nodes that define variable v
- def[n] = set of variables that are defined at node n

Use
-Aread of a variable’s value
-use[v] = set of CFG nodes that use variable v
-use[n] = set of variables that are used at node n

More precise definition of liveness
- Avariable v is live on a CFG edge if

(1)3 a directed path from that edge to a use of v (node in

use[v]), and
(2)that path does not go through any def of v (no nodes in
def[v])

()
I
o

a<o

\/

v live

& def[v]

€ use|v]

The Flow of Liveness

« Data-flow

 Liveness of variables is a property that
flows through the edges of the CFG

e Direction of Flow

* Liveness flows backwards through the
CFQG, because the behavior at future
nodes determines liveness at a given
node

!
1. a=0
2. b=a+1
3 c;;+b
4 a=b*2
5 ;;9

6. return c

Yes

Liveness at Nodes
, I
| Just before computation =
— 1. a=0
a=20
l Just after computation -
2. b=a+1 <

Two More Definitions
4, a=b*2

- A variable is live-out at a node if it is live on

any out edges
- Avariable is live-in at a node if it is live on any in
5.

edges
o~

6. return c

Yes

Computing Liveness

Generate liveness: If a variable is in use[n], it is live-in at node n

Push liveness across edges:
* If avariable is live-in at a node n
* thenitis live-out at all nodes in pred[n]

Push liveness across nodes:
* If a variable is live-out at node n and not in def[n]
* then the variable is also live-in at n

Data flow Equation: in[n] = useln] J (out[n] — def|n])

out|n] = J in|s]

sesucc|n]

Solving Dataflow Equation

for each node n in CFG s .
_ Initialize solutions
In[n] = @; out[n] = @

repeat
for each node n in CFG

IN’[n] = Iin[n] Save current results
out’[n] = out[n]
In[n] = use[n] u (out[n] — def[n])
out[n] = u in[s]
S € succ|n]
until in’[n]=in[n] and out’[n]=out[n] for all n } Test for convergence

} Solve data-flow equation

Computing Liveness Example

Ist 2nd 3rd 4th 5th 6th 7th
ncgle use def| in out | in out |in out [in out | in out | in out | in out
1 a a ac | cac| cac| c ac
2 a a a bc |ac bc|ac be|ac befac be|ac be
3 bc be bc b [bcb |bcb [bc b [bec be|bec be
4 b b b a|b a |b ac|bc ac|bc ac|bc ac
5 a a a |a aclac acfac ac|ac ac|ac ac|ac ac
6 ¢ C C (. C C C C

A

!
1. a=0
2 b=;+1
3 c;L+b
4 a=b*2

6. return c

Yes

Iterating Backwards: Converges Faster

st 2nd 3rd
nc#ie use def |out in |out in [out in
6 ¢ C C C
5 ¢ ac| ac ac|ac ac
4 b ac bc| ac beflac Dbe
3 Dbc bc be| be belbe be
2 a bc ac| be ac| be ac
| ac clac c |ac ¢

A

!
1. a=0
2 b=;+1
3 c;L+b
4 a=b*2
5 ;;9

6. return c

Yes

Node |use def _

6 C
Liveness Example: Round1 5 o
4 a
A variable is live at a particular point in the program if its value l 3 bc ¢
at that point will be used in the future (dead, otherwise). 1 a=0 5 3 b
Algorithm r 1 a
, 2. b=a+1 <
for each node n in CFG
in[n] = &; out[n] =& } [nitialize solutions !
repeat 3. c=c+b
for each node n in CFG in reverse topsort order
in’[,n] =_in[n] Save current results 4. a=b*2
out’[n] = out|n]
out[n] = ses&cjc[n] in[s] } Solve data-flow equations v
in[n] = use[n| U (out|n| — def|n])

until in’[n]=in[n] and out’[n]=out[n] for all n } Test for convergence V Yes
A

6. return c

Node |use |def

6 C
Liveness Example: Round1 5 4
4 a
in: c l : 20N (€
Algorithm out: ac |1+ 279 ; L
for each node n in CFG in: ac 2 b E'i + 1 . 1 °
e _ [nitialize solutions . B .
in[n] =9; out[n] =2 } out: bc
repeat v in: bc
for each node n in CFG in reverse topsort order 3. c=Cc+b b
e out: bc
in’[n] = in[n] } Save current results . Yo
out’[n] = out[n] in: be 4 b*?2 =
— 2 a - "
out[n] = sEsEch[n] in]s] } Solve data-flow equations out: ac
in[n] = use[n] U (out[n] — defn]) v in: ac

until in’[n]=in[n] and out’[n]=out[n] for all n } Test for convergence 5 a<9

out: c
No_—
A mn: c

6. return c

Node |use def _

6 C
Liveness Example: Roundi P
4 a
in: c ' . e |e
Algorithm out: ac . a9 2 ° b
for each node n in CFG o ' in: ac 2 b = ' + 1) 1 °
in[n] = @: out[n] =2 } [nitialize solutions out: be — = a h
repeat v in: bc
for each node n in CFG in reverse topsort order 3. c=Cc+b
in’[n] = in[n] } Save current results out: bc
out’[n] = out[n] in: bc 4 oo Yes
— 2 a = *
out[n] = seSEchlnl in[s] } Solve data-flow equations out: ac
in[n] = use|n| U (out[n] — def]n)) ! in: ac
until in’[n]=in[n] and out’[n]=out[n] for all n } Test for convergence 5 a<9 :

out: ac
No_—
4 mn: c

6. return c

Conservative Approximation

X Y z
ngrﬂe use def||in out|in out|in out
1 a Cc ac cd acd| c¢ ac
2 a b ||ac bc |acd bed| ac b
3 bc ¢ [bc bec |bedbed b b
4 b a || bc ac |bed acc:| b ac
5 a ac ac |acd acd|ac ac
6 C c c c

Solution X:

- From the previous slide

A

!
1. a=0
2 b=;+1
3 c;L+b
4 a=b*2
5 ;;9

6. return c

Yes

Conservative Approximation

X Y z
nqr,rde use def||in out|in out|in out
1 a c ac cd acd| c¢ ac
2 a b ||ac bc |acd bed| ac b
3 bc ¢ [bc bec |bedbed b b
4 b a |[bc ac [bed acdl b ac
5 a ac ac |acd acd|ac ac
6 C C C c

Solution Y:

Carries variable d uselessly
- Does Y lead to a correct program?

A

l
1 a=0
2. b=a+1
3 c=c+b
4 a=b*2
5. a<9
No —

6. return c

Yes

Imprecise conservative solutions = sub-optimal but correct programs

Conservative Approximation

nqr,rde use def

X
in out

Y
in out

Z
in out

(VT S GV (9]

o)}

a
bc

a

Solution Z:
Does not identify c as live in all cases
- Does Z lead to a correct program?

a

Cc ac
ac bc
bc be
bc ac
ac ac

C

cd acd

acd bed

C ac

ac b

bcdbed b b

becd acd
acd acd

C

b ac
ac ac

C

A

l
1 a=0
2. b=a+1
3 c=c+b
4 a=b*2
5. a<9
No —

6. return c

Non-conservative solutions = incorrect programs

Yes

Soundness vs. Completeness

» Dataflow analysis sacrifices completeness

« Dataflow analysis is sound
* Report facts that could occur

Need for approximation

» Static vs. Dynamic Liveness: b*b is always non-negative, so ¢ >=Db is
always true and a’s value will never be used after node

Y
lla :(=b *Db , : , .
| No compiler can statically identify
* all infeasible paths
2lc :=a+b
3l ¢ >= b? -
No Yes

4 return a 5| return c

Liveness Analysis Example Summary

* Live range of a
* (1->2) and (4->5->2)
* Live range of b
¢ (2->3->4)
* Live range of c
* Entry->1->2->3->4->5->2, 5->6

You need 2 registers Why?

l
1. a=0
2 b=‘:;\+1
3 c="c+b
4 a=b*2
5 a"<9

o

6. return c

Yes

Reaching Definition

 Definition: A definition d of a variable v reaches node n if there is a path
from d to n such that v is not redefined along that path.

Reaching Definition

Definition

— A defimition (statement) d of a variable v reaches
node n if there 1s a path from d to n such that v 1s

S

v oI=...
not redefined along that path < — | & defv]
S n
Uses of reaching definitions d| x 1= 5|«
— Build use/def chains < Does this def of x reach n?
Can we replace n with £ (5) ?

— Constant propagation

— Loop mvariant code motion

(. .) A
X = a + b;<€—

Oy Ul W N+

a=. . ., €4 Recaching definitions of a and b

b= . . .; : .

£ ! To determine whether it’s legal to move statement 4
or .

out of the loop. we need to ensure that there are no
reaching definitions of a or b inside the loop

OooJdJon0lhdWPMNDR

[n1. example]

. example () { l
b:O; —
for(a=0; a< 5; a++) { [n2. b=0]
b=D>b+ a; l
while (b!=0)
b=>b - 1; [“3-la=°]
}
return (b) ; nd. a<5] False
- lTrue \
5. b=b+al
l n9. return(b)

né. bhOL__
lTrue
False
rﬂ.b:b-ﬂ

n8. a=a+1]_)

Computing Reaching Definition

* Assumption: At most one definition per node

* Gen[n]: Definitions that are generated by node n (at most one)
* Kill[n]: Definitions that are killed by node n

Generic Datatlow Analysis

* IN[n] = set of facts at the entry of node n

 OUTI[n] = set of facts at the exit of node n

* Analysis computes IN[n] and OUT][n] for each node

» Repeat this operation until IN[n] and OUT[n] stops changing
* fixed point

Data-tflow equations for Reaching Detfinition

The in set
— A definition reaches the beginning of a node if it reaches the end of any of
the predecessors of that node _—
Q out out > predn]
N ¥

imn
n

The out set
— A definition reaches the end of a node 1f (1) the node itself generates the

definition or if (2) the definition reaches the beginning of the node and the

node does not kill it

° Ggn a4
. out out
infn]= U out[p] (1) 2)

p € pred[n]

out[n] = gen[n] U (in[n] — kill[n])

[n1. example]

l

[n2. b=0 |

l

[n3. a=0]

l

IN[n) = |] ouTip] nd. a<5| Tse

pEpred|n] l True

OUTI[n] = GEN[n]|_J UN[n] - KILL[n)) 5. b=b+a

l n9. return(b)

né. b l= 0]7
J,True
False
n7. b=b-1]

n8. a=a+1]_)

Recall Liveness Analysis

» Data-flow Equation for liveness
in[n] = use[n] U (out[n] — def[n])

outln]= U in[s]

s & succ[n]

 Liveness equations in terms of Gen and Kill

in[n] = gen[n] U (out[n] — kill[n])

A use of a variable generates liveness

outfn]= U in[s] A def of a variable kills liveness
s € succ[n]

Gen: New information that’s added at a node
Kill: Old information that’s removed at a node

Can define almost any data-flow analysis in terms of Gen and Kill

Direction of Flow

Backward data-flow analysis

— Information at a node 1s based on what happens later in the flow graph

i.e., [] 1s defined in terms of out[] u
n

in[n] =gen[n] U (out[n]— kill[n]) in .
_ U . £ liveness
out[n] = < & Saecfa] m[s] ont

|
Forward data-flow analysis
— Information at a node 1s based on what happens earlier in the flow graph

i.e., out[] 1s defined in terms of in[] n L

mn[n] - etﬁze d[n] out[p] | | 1£ I‘G?C!li.llg
out[n] =gen[n] U (in[n]—kill[n]) ol definitions

1
Some problems need both forward and backward analysis
— e.g., Partial redundancy elimination (uncommeon)

Data-Flow Equation for reaching definition

Symmetry between reaching definitions and liveness

— Swap m[] and out[] and swap the directions of the arcs

Reaching Definitions

inn]= U

ouf[s]

P € pred[n]

out[n] = gen[n] U (in[n] — kill[n])

entry

S

Defofx

X=

Is x def’d along

this path?

Live Variables

outfln]= U in[s]

s & succ[n]

in[n] = gen[n] U (out[n] — kill[n])

entry

S

Is x def’d along
this path?

Use of x| =x

Available Expression

* An expression, x+y, is available at node n if every path from the entry node
to n evaluates x+y, and there are no definitions of x or y after the last
evaluation.

entry

— %
cL WXtV ..

CLX+Y ..

x and y not defined
along blue edges

Available Expression for GSE

« Common Subexpression eliminated

* If an expression is available at a point where it is evaluated, it need not
be recomputed

Example t
1| 1 =7
v £ =4 % i
111 =3 a = t
a :=4 * 1 /
_41/ o[i =4 + 1
211 = 1 + £ =4 * i
b :=4 * i - -

)/

(V¥
Q
[
- o=
*
|_l.
(VS
Q
[
< ([«

)/

Very Busy Expression

entry
* An expression is very busy if, no matter [l]
what path is taken, the expression is used I o A
: : . | (a!=b)
before any of the variables occurring in it
are redefined.
* b-ais very busy at the loop entry point. | x=b-a | [y=ba |
* a-b is not very busy as a is redefined l
along the False edge. [=]
[y=a b] [x=a-b]

Must vs. May analysis

* May information: ldentifies possibilities
* Must information: Implies a guarantee

I Must

Forward Reaching Definition Available Expression
Backward Live Variables Very Busy Expression

