
RUN-TIME ENVIRONMENTS
Baishakhi Ray

Programming Languages & Translators

These slides are motivated from Prof. Alex Aiken: Compilers (Stanford)

▪We have covered the front-end phases

▪ Lexical analysis
▪ Parsing
▪ Semantic analysis

▪ Next are the back-end phases

▪ Code generation

▪ Optimization

All the compilation errors

are caught in this phase

Run-time environments

▪ What are we trying to generate?

▪ How executable code is laid out?

Run-time Processes

▪ Execution of a program is initially under the control of the operating system

▪ When a program is invoked:

▪ The OS allocates space for the program

▪ The code is loaded into part of the space

▪ The OS jumps to the entry point (i.e., “main”)

Memory Layout

▪ By tradition

▪ Low address at the top
▪ High address at the bottom

▪ Lines delimiting areas for different

kinds of data

▪ Simplified representation

▪ Not all memory need be contiguous

▪ Compiler is responsible for:

▪ Generating code
▪ Orchestrating use of the data area

code

Data Space

Low Address

High Address

Code Generation Goals

▪ Two goals:

▪ Correctness
▪ Speed

▪Most complications in code generation come from trying to be fast as
well as correct

Assumptions about Execution

▪ Execution is sequential

▪ control moves from one point in a program to another in a well-
defined order

▪When a procedure is called, control eventually returns to the point
immediately after the call

Activations

▪ An invocation of procedure P is an activation of P

▪ The lifetime of an activation of P is

▪ All the steps to execute P
▪ Including all the steps in procedures P calls

▪ The lifetime of a variable x is the portion of execution in which x is
defined

▪ Lifetime is a dynamic (run-time) concept
▪ Scope is a static concept

▪ Assumption (2) requires that when P calls Q, then Q returns before P does

▪ Lifetimes of procedure activations are properly nested

▪ Activation lifetimes can be depicted as a tree

▪ Example:

Class Main {

 int g() { 1 };

 int f() { g() };

 int main() { g(); f(); };

}

Activation Trees

main

g f

g

Example 2

Class Main {

 int g(){1};

 int f(int x){

 if(x == 0) g();

 else f(x-1);

 };

 int main() {f(3);};

}

What is the activation tree?

bool isEven(int x){

 return (x % 2 == 0);

}

bool isOne(int x) {

 return (x == 1);

}

powerOfTwo(int x) {

 if isEven(x)

 powerOfTwo(x / 2);

 else

 isOne(x);

}

main() {

 powerOfTwo(4);

}

Activation Trees

▪ The activation tree depends on run-time behavior

▪ The activation tree may be different for every program input

▪ Since activations are properly nested, a stack can track currently active procedures

▪ Example:

Class Main {

 int g() { 1 };

 int f() { g() };

 int main() { g(); f(); };

}

Activation Trees

main Stack

main

▪ Example:

Class Main {

 int g() { 1 };

 int f() { g() };

 int main() { g(); f(); };

}

Activation Trees

main

g

Stack

main

g

▪ Example:

Class Main {

 int g() { 1 };

 int f() { g() };

 int main() { g(); f(); };

}

Activation Trees

main

g f

g

Stack

main

g. f

▪ Example:

Class Main {

 int g() { 1 };

 int f() { g() };

 int main() { g(); f(); };

}

Activation Trees

main

g f

g

Stack

main

g f

g

Example 2

Class Main {

 int g(){1};

 int f(int x){

 if(x == 0) g();

 else f(x-1);

 };

 int main() {f(3);};

}

main

f

f

f

g

Revised Memory Layout

code

stack

Low Address

High Address

Activation Records

▪ The information needed to manage one procedure activation is called
an activation record (AR) or frame.

▪ If procedure F calls G, then G’s activation record contains a mix of info
about F and G.

▪ F is “suspended” until G completes, at which point F resumes.

▪ G’s AR contains information needed to resume execution of F.
▪ G’s AR may also contain:

▪ G’s return value (needed by F)
▪ Actual parameters to G (supplied by F)
▪ Space for G’s local variables

The Contents of a Typical AR for G

▪ Space for G’s return value

▪ Actual parameters

▪ Pointer to the previous activation record

▪ The control link; points to AR of caller of G

▪ Return address

▪ Machine status prior to calling G

▪ Contents of registers & program counter

▪ Local variables

▪ Other temporary values

Example 2

Class Main {

 int g(){1};

 int f(int x){

 if(x == 0) g();

 else f(x-1) (**);

 };

 int main() {f(3); (*)};

}

main

f

f

f

g

(result)
argument=3
control link
return address (*)
(result)
argument=2
control link
return address (**)

main
f

f

Discussion

▪ The advantage of placing the return value 1st in a frame is that the caller can find it at
a fixed offset from its own frame

▪ There is nothing magic about this organization

▪ Can rearrange order of frame elements

▪ Can divide caller/callee responsibilities differently

▪ An organization is better if it improves execution speed or simplifies code generation

▪ Real compilers hold as much of the frame as possible in registers

▪ Especially the method result and arguments

The compiler must determine, at compile-time, the layout of activation records and
generate code that correctly accesses locations in the activation record

Thus, the AR layout and the code generator must be designed together.

Globals

▪ All references to a global variable point to the same object

▪ Can’t store a global in an activation record

▪ Globals are assigned a fixed address once

▪ Variables with fixed address are “statically allocated”

▪ Depending on the language, there may be other statically allocated values

Revised Memory Layout

code

stack

Low Address

High Address

Static Data

Heap Storage

▪ A value that outlives the procedure that creates it cannot be kept in the AR .

▪ Eg. method foo() { new Bar }

▪ The Bar value must survive deallocation of foo’s AR

▪ Languages with dynamically allocated data use a heap to store dynamic data

Revised Memory Layout

code

stack

Low Address

High Address

Static Data

Heap

Notes

▪ The code area contains object code

▪ For most languages, fixed size and read only

▪ The static area contains data (not code) with fixed addresses (e.g., global data)

▪ Fixed size, may be readable or writable

▪ The stack contains an AR for each currently active procedure

▪ Each AR usually fixed size, contains locals

▪ Heap contains all other data

▪ In C, heap is managed by malloc and free

▪ Both the heap and the stack grow

▪ Must take care that they don’t grow into each other

▪ Solution: start heap and stack at opposite ends of memory and let them grow towards each

other

Data Layout

▪ Low-level details of machine architecture are important in laying out data for correct
code and maximum performance

▪ Chief among these concerns is alignment

Alignment

▪ Most modern machines are (still) 32 bit

▪ 8 bits in a byte

▪ 4 bytes in a word

▪ Machines are either byte or word addressable

▪ Data is word aligned if it begins at a word boundary

▪ Most machines have some alignment restrictions or performance penalties for poor
alignment

▪ SPARC and ARM prohibit unaligned accesses

▪ MIPS has special unaligned load/store instructions

▪ x86, 68k run more slowly with unaligned accesses

▪ Example: A string “Hello” Takes 5 characters (without a terminating \0)

▪ To word align next datum, add 3 “padding” characters to the string •

▪ The padding is not part of the string, it’s just unused memory

Padding
▪ To avoid unaligned accesses, the C compiler pads the layout of unions and records.

▪ Rules:

▪ Each n-byte object must start on a multiple of n bytes (no unaligned accesses).

▪ Any object containing an n-byte object must be of size m*n for some integer m (aligned

even when arrayed).

▪struct padded {

int x; /* 4 bytes */

char z; /* 1 byte */

short y; /* 2 bytes */

char w; /* 1 byte */

};

x x x x
y y z

w

struct padded {

char a; /* 1 byte */

short b; /* 2 bytes */

short c; /* 2 bytes */

};

b b a
c c

Each cell represents 1 byte

Unions

▪ A C struct has a separate space for each field; a C union shares one space among all
fields

union intchar {

 int i; /* 4 bytes */

 char c; /* 1 byte */

};

i i i i/c

union twostructs {

 struct {

char c; /* 1 byte */ 	  
int i; /* 4 bytes */ 	

 } a;

 struct {

short s1; /* 2 bytes */

short s2; /* 2 bytes */

 } b;

}

c
i i i i

s2 s2 s1 s1or

