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The Register Allocation Problem 

▪ Intermediate code uses unlimited temporaries
▪ Simplifies code generation and optimization 
▪ Complicates final translation to assembly 

▪ Typical intermediate code uses too many temporaries

▪ The problem: 
▪ Rewrite the intermediate code to use no more temporaries than there are machine registers 

▪ Method: 
▪ Assign multiple temporaries to each register – But without changing the program behavior  



An Example 

▪ Consider the program 
   a := c + d 
   e := a + b 
   f := e - 1 

▪ Assume a and e dead after use 
▪ Temporary a can be “reused” after e := a + b 
▪ So can temporary e 

▪ Can allocate a, e, and f all to one register (r1): 
r1 := r2 + r3 
r1 := r1 + r4 
r1 := r1 - 1 

▪ A dead temporary is not needed 
▪  A dead temporary can be reused 



The Idea 

▪ Temporaries t1 and t2 can share the same register if at any point in the program at 
most one of t1 or t2 is live.

i.e.,

▪ If t1 and t2 are live at the same time, they cannot share a register



Algorithm: Part I 

▪ Compute live variables for each point:  

f := 2 * e

a := b + c 
d := -a 
e := d + f 

b := d + e 
e := e - 1 

b := f + c 

{a,c,f}

{c,d,f}

{c,e}

{c,f} {c,f}

{b}

{b}

{b, c, e, f}

{c,d,e,f}

{b,c,f}



The Register Interference Graph 

▪ Construct an undirected graph 
▪ A node for each temporary 
▪ An edge between t1 and t2 if they are live simultaneously at some point in the program 

▪ This is the register interference graph (RIG) 
▪ Two temporaries can be allocated to the same register if there is no edge connecting them 



Example

• E.g., b and c cannot be in the same register 
• E.g., b and d could be in the same register 



Definitions

▪ A coloring of a graph is an assignment of colors to nodes, such that nodes connected 
by an edge have different colors 

▪ A graph is k-colorable if it has a coloring with k colors 

r1

r2

r2

r3

r3

r4

• There is no coloring with less than 4 colors 
• There are 4-colorings of this graph 



Example After Register Allocation

▪ Compute live variables for each point:  

r1 := 2 * r2

r2 := r3 + r4 
r3 := -r2 
r2 := r3 + r1

r3 := r3 + r2 
r2 := r2 - 1

r3 := r1 + r4



Computing Graph Colorings

▪ How do we compute graph colorings? 

▪ It isn’t easy: 
▪ This problem is very hard (NP-hard). 
▪ No efficient algorithms are known. 

▪ Solution: use heuristics 
▪ A coloring might not exist for a given number of registers 

▪ Solution: later



Graph Coloring Heuristic

▪ Observation: 
▪ Pick a node t with fewer than k neighbors in RIG 
▪ Eliminate t and its edges from RIG 
▪ If resulting graph is k-colorable, then so is the original graph 

▪ Why? 
▪  Let c1,…,cn be the colors assigned to the neighbors of t in the reduced graph  
▪ Since n < k we can pick some color for t that is different from those of its neighbors



Graph Coloring Heuristic

▪ The following works well in practice: 
▪ Pick a node t with fewer than k neighbors 
▪ Put t on a stack and remove it from the RIG 
▪ Repeat until the graph has one node 

▪ Assign colors to nodes on the stack 
▪ Start with the last node added 
▪ At each step pick a color different from those assigned to already colored neighbors



Graph Coloring Example (1)

▪ Start with the RIG and with k = 4:

▪ Remove a

f

a

b

c

d

e

Stack: {}



Graph Coloring Example (2)

▪ Remove d

f b

c

d

e

Stack: {a}



Graph Coloring Example (3)

▪ Remove c

f b

c
e

Stack: {d, a}



Graph Coloring Example (4)

▪ Remove b

f b

e

Stack: {c, d, a}



Graph Coloring Example (5)

▪ Remove e

f

e

Stack: {b, c, d, a}



Graph Coloring Example (6)

▪ Remove f

f
Stack: {e, b, c, d, a}



Graph Coloring Example (7)

Stack: {f, e, b, c, d, a}



Graph Coloring Example (8)

Stack: {e, b, c, d, a}
 r1 f



Graph Coloring Example (9)

▪ e must be in a different register from f

r1 f

r2 e

Stack: {b, c, d, a}



Graph Coloring Example (10)

r1 f b r3

r2 e

Stack: {c, d, a}



Graph Coloring Example (11)

r1 f b r3

c r4
 r2 e

Stack: {d, a}



Graph Coloring Example (12)

r1 f
b r3

c r4

d r3

r2 e

Stack: {a}



Graph Coloring Example (13)

Stack: {}
r1 f

a r2

b r3

c r4

d r3

r2 e



What if the Heuristic Fails?

▪ What if all nodes have k or more neighbors ? 

▪ Example: Try to find a 3-coloring of the RIG:

f

a

b

c

d

e



What if the Heuristic Fails?

▪ Remove a and get stuck (as shown below) 

▪ Pick a node as a candidate for spilling 
▪ A spilled temporary “lives” in memory 
▪ Assume that f is picked as a candidate

f
b

c

d

e



What if the Heuristic Fails?

▪ Remove f and continue the simplification 
▪ Simplification now succeeds: b, d, e, c 

b

c

d

e



What if the Heuristic Fails?

▪ Eventually we must assign a color to f 

▪ We hope that among the 4 neighbors of f we use less than 3 colors ⇒ optimistic 
coloring 

? f
b r3

c r1

d r3

r2 e



Spilling

▪ If optimistic coloring fails, we spill f 
▪ Allocate a memory location for f 

▪ Typically in the current stack frame 
▪ Call this address fa 

▪ Before each operation that reads f, insert 
f := load fa 

▪ After each operation that writes f, insert 
store f, fa 



Spilling Example 

▪ This is the new code after spilling f 

f := 2 * e
store f, fa

a := b + c 
d := -a 
f := load fa 
e := d + f 

b := d + e 
e := e - 1 

f = load fa
b := f + c 



A Problem

▪ This code reuses the register name f 

▪ Correct, but suboptimal 
▪ Should use distinct register names whenever possible
▪ Allows different uses to have different colors



Spilling Example 

▪ This is the new code after spilling f 

f2 := 2 * e
store f2, fa

a := b + c 
d := -a 
f1 := load fa 
e := d + f1 

b := d + e 
e := e - 1 

f3 = load fa
b := f3 + c 



Recomputing Liveness Information

▪ The new liveness information after spilling:

f2 := 2 * e
store f2, fa

a := b + c 
d := -a 
f1 := load fa
e := d + f1 

b := d + e 
e := e - 1 

f3:= load fa
b := f3 + c 

{a,c,f}

{c,d,f}

{c,e}

{c,f} {c,f}

{b}

{b}

{b,c,e,f}

{c,d,e,f}

{b,c,f}

{c,d,f1}

{c,f2}

{c,f3}



Recomputing Liveness Information 

▪ New liveness information is almost as before 
▪ Note f has been split into three temporaries 

▪ fi is live only 
▪ Between a fi := load fa and the next instruction 
▪ Between a store fi, fa and the preceding instr. 

▪ Spilling reduces the live range of f 
▪ And thus reduces its interferences 
▪ Which results in fewer RIG neighbors 



Recompute RIG After Spilling 

▪ Some edges of the spilled node are removed 

▪ In our case f still interferes only with c and d 

▪ And the resulting RIG is 3-colorable 



Spilling Notes

▪ Additional spills might be required before a coloring is found 

▪ The tricky part is deciding what to spill 
▪ But any choice is correct 

▪ Possible heuristics: 
▪ Spill temporaries with most conflicts 
▪ Spill temporaries with few definitions and uses 
▪ Avoid spilling in inner loops



Caches

▪ Compilers are very good at managing registers 
▪ Much better than a programmer could be 

▪ Compilers are not good at managing caches
▪ This problem is still left to programmers
▪  It is still an open question how much a compiler can do to improve cache performance 

▪ Compilers can, and a few do, perform some cache optimizations 



Cache Optimization 

▪ Consider the loop

▪ This program has terrible cache performance 
▪ Why? 

for(j := 1; j < 10; j++) 
 for(i=1; i<1000;i++)
   a[i] *= b[i]



Cache Optimization 

▪ Consider the program

▪ Computes the same thing 
▪ But with much better cache behavior 
▪ Might actually be more than 10x faster 

▪ A compiler can perform this optimization 
▪ called loop interchange

for(i=1; i<1000; i++)
  for(j := 1; j < 10; j++) 
     a[i] *= b[i]



Conclusions

▪ Register allocation is a “must have” in compilers: 
▪ Because intermediate code uses too many temporaries 
▪ Because it makes a big difference in performance 

▪ Register allocation is more complicated for CISC machines


