
REPERTOIRE: A Cross-System Porting Analysis Tool for
Forked Software Projects

Baishakhi Ray, Christopher Wiley, Miryung Kim
The University of Texas at Austin

{rayb, thewiley, miryung@ece}.utexas.edu

ABSTRACT
To create a new variant of an existing project, developers
often copy an existing codebase and modify it. This process
is called software forking. After forking software, develop-
ers often port new features or bug fixes from peer projects.
Repertoire analyzes repeated work of cross-system porting
among forked projects. It takes the version histories as in-
put and identifies ported edits by comparing the content of
individual patches. It also shows users the extent of ported
edits, where and when the ported edits occurred, which de-
velopers ported code from peer projects, and how long it
takes for patches to be ported.

1. INTRODUCTION
Software forking occurs when a developer or a group of

developers splits off software into separate conceptual enti-
ties by copying an existing project. Forking is particularly
common in free open source software projects, where dif-
fering visions and personality clashes occur without an uni-
fying profit motive. For instance, the forking of FreeBSD,
NetBSD, and OpenBSD from 386BSD, the split of XEmacs
from GNU Emacs, and the split of LibreOffice from OpenOf-
fice.org are well known forks. Software developed by indus-
try may also be forked to support the needs of multiple cus-
tomers with different feature requirements.

Forking is often considered to be counter-productive. As
multiple peer projects evolve in parallel, developers may
need to port similar features or bug fixes from one project to
another, incurring duplicate maintenance effort. This paper
presents Repertoire, a tool that analyzes the extent and
characteristics of cross-system porting. It allows users to
analyze the number of lines of code ported from the patches
of peer projects, the developers responsible for those ported
edits, the time taken to port patches from peer projects,
etc. It presents the temporal and spatial characteristics of
cross-system porting using various graphical views. It also
supports interactive browsing of ported edits. Currently it is
fully integrated with the state of the art version control sys-
tems such as Git and Mercurial. These analyses are designed
to aid managers and architects to make informed decisions
about the maintenance of forked software systems.

2. REPERTOIRE FEATURES
Suppose Sheryl is a manager working for the Exemplar

corporation, which writes and sells software to enterprise
customers. Two years ago, a particularly large customer re-
quested a feature that required extensive modifications to

the main product. To accommodate this customer’s needs,
the company forked the main product and made the nec-
essary custom changes. Since then, a considerable amount
of engineering effort has been continually spent to port bug
fixes and security patches from the main product. Sheryl is
contemplating whether it would be worthwhile to merge the
two products back instead duplicating maintenance effort.

Sheryl may need to analyze how the products evolve in
parallel and how often cross-system porting occurs. She
needs to know where the porting effort is focused on, who
are the main developers porting code from peer projects,
and how often cross-system porting happens, etc. She needs
to know which directories and files mostly consist of ported
edits. She may also be interested in knowing how long it
takes for bug fixes and security patches to propagate from
the main product to the other. These are the questions
that Repertoire can help Sheryl to answer. For presenta-
tion purposes, we refer to the main project and the forked
project as A and B respectively in the following subsections.

Porting Frequency View. Suppose that Sheryl wants
to know how often cross-system porting occurs. Given the
version histories of A and B, Repertoire visualizes the
extent of code ported from one project to another over time.
In the Porting Frequency View in Figure 1, the x-axis shows
time in months and the y-axis shows the average percentage
of ported edits with respect to total edits in each commit.
Sheryl may select to see only the edits ported from A to B,
only the edits ported from B to A, or both ways. Sheryl
may see that 90% of the commits to B are ported from
the patches of A, whereas 95% of the commits to A are not
ported from B, indicating that most engineers working on B
spend their time porting code and little time writing original
code. On the other hand, if Sheryl notices that most edits
to either system are not ported, then she may conclude that
the systems are diverging further apart.

File Distribution View. To figure out where her or-
ganization is spending time porting code, Sheryl needs to
see which pairs of files share port edits between A and B.
Repertoire helps Sheryl by presenting the File Distribution
View of the source and target of ported edits. This view is a
scatter plot with files from A making up the x-axis and files
from B making up the y-axis. A point is plotted at (x,y) if
there is a ported edit from file x to file y or vice versa. Users
can also grasp the amount of ported edits by inspecting the
color of the dot. The darker the color is, the higher the ra-
tio of ported edits to the total lines of code in the file. This
allows us to answer which files have the most ported edits
and which files have the highest ratio of ported edits. The

Figure 1: Repertoire analysis of cross-system porting between two forked projects.

File Distribution View in Figure 1 shows an example of this
file distribution view. By selecting any point on this view,
Sheryl can browse all ported lines between the two files and
investigate who ported the corresponding code, the commit
dates, etc.

Developer View. To ask her team about the feasibility
of merging A and B, Sheryl may need to identify the devel-
opers who have a deep understanding of both projects. A
reasonable heuristic for finding such developers is to simply
identify the developers do a lot of porting work. Reper-
toire displays a pie chart showing which developers are
responsible for what fraction of the total ported lines. See
the Developer Distribution View of Figure 1.

Porting Latency View. Repertoire shows a user
how long it takes for individual patches to propagate from
one system to another system by presenting a cumulative
distribution of porting latencies. The Porting Latency View
of Figure 1 shows the number of days between when a patch
is first committed to one system and when a similar patch
is committed to a target system.

3. IMPLEMENTATION AND EVALUATION
Repertoire analyzes diff-based program patches of two

forked projects to identify the ported edits. It works in
two phases. In the first phase, Repertoire uses CCFind-
erX [2] to identify similar edit contents (clones) in the input
patches. In the second phase, Repertoire determines if two
identified clones represent similar edit operations by com-
paring the edit operation types (i.e., addition, deletion, and
modification) using an N-gram matching algorithm [1].By
comparing the commit dates of similarly edited code re-
gions, Repertoire disambiguates the source vs. target of
the ported edit. This tool demo paper expands on a tool
that we developed to study co-evolution of BSD products
and a detailed description of Repertoire is described in
our technical report [3].

In 18 years of parallel evolution of the BSD family, on av-

erage, FreeBSD ports 13.77% of edited lines from NetBSD
and OpenBSD, while 15.52% and 10.74% of edited lines in
NetBSD and OpenBSD originate from the other two BSDs
respectively. 26.12%, 58.85%, and 44.85% of active develop-
ers in FreeBSD, NetBSD and OpenBSD port patches from
the other BSDs. The average time taken to port patches
from peer projects in FreeBSD, NetBSD and OpenBSD are
734, 725, and 944 days respectively. In all three projects,
porting is mostly localized within 20% of the modified files [3].

4. SUMMARY
This paper presents Repertoire that analyzes the extent

of cross-system porting among projects forked from a com-
mon ancestor. Using Repertoire, managers and engineers
can measure the frequency of cross-system porting, learn
which developers do how much of the porting work, investi-
gate the trend of cross-system porting work over time, and
the spatial distribution of ported edits with respect to the
file system structure.

5. REFERENCES
[1] G. W. Adamson and J. Boreham. The use of an

association measure based on character structure to
identify semantically related pairs of words and
document titles. Information Storage and Retrieval,
10(7-8):253–260, 1974.

[2] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection system
for large scale source code. IEEE Transactions on
Software Engineering, 28(7):654–670, 2002.

[3] B. Ray and M. Kim. A case study of cross-system
porting in forked projects. In ESEC/FSE-20: ACM
SIGSOFT the 20th International Symposium on the
Foundations of Software Engineering, 2012, to appear.

Input Types Example Inputs
working directory /var/tmp

CCFinderX path /usr/bin/ccfx

Project 1
version control type Git
repository root /path/to/myrepo

time period 11/2/2010 - 9/31/2011

Project 2
version control type Mercurial
repository root /path/to/anotherrepo

time period 11/2/2010 - 9/31/2011

Table 1: Example inputs to Repertoire.

APPENDIX
The input wizard of Repertoire gathers information about
the version histories of forked projects. The analysis wizard
of Repertoire then visualizes cross-system porting analysis
results between the input projects using several views: Port-
ing Frequency View, Developer View, Porting Latency View,
and File Distribution View. Using the inputs specified by
the user in the input wizard, Repertoire’s back-end ex-
tracts individual diff-based patches, developers, and com-
mit dates from the version control repositories and com-
pares the content and edit operations of the patches using
CCFinderX. Table 1 shows example inputs. After identify-
ing cross-system ported edits, the back-end stores the results
in a database, which can then be loaded from GUI visual-
ization components. The internal structure of Repertoire
is shown in Figure 2.

User%Interface%

Input&Wizard%
Projects,%Repository%URLs,%
and%Time%Period%

Analysis&Wizard:%%
Por9ng%Frequency/%File%Distribu9on%
Developer/%Por9ng%Latency%

Data&Extrac5on:&
diff$patches$
Developers%
Commit%dates%

Iden5fica5on&of&
Ported&Edits&
(CCFinderX,%NGgram%
Matching)%

Repertoire&DB&

Back%End%

Figure 2: Repertoire internal components.

Repertoire is an open source tool and can be down-
loaded from https://github.com/SealLab/RepertoireTool

This section describes the steps required to run Reper-
toire.

A. INSTALLATION
1. Install required libraries

− Python 2.7

− Qt 4.x: a cross-platform application and UI frame-
work

− pyuic4: a UI compiler for Qt that comes with the
PyQT package.

2. Run ‘make’ from src/

3. Run ‘make’ from src/analysis/

4. Obtain a working copy of CCFinderX for your platform

− Ensure the execution of CCFinderX by running a
command ‘ccfx d cpp somefile.cpp’

B. POPULATING A DATABASE
Repertoire takes as input the repository location and

time period of version histories and identifies ported edits
among the input projects. It requires a working directory to
store intermediate files, a path to an executable CCFinderX,
and information about version control repositories. For each
repository, the user is asked to specify the type of version
control system (e.g. Git or Mercurial), the root URL of the
repository, and the time period that the user is interested
in. Table 1 shows example inputs. Repertoire checks the
validity of inputs and then proceeds to populate a database
with the analysis results of ported edits.

1. Run ‘src/run_vcs_flow.py’

− When an input wizard appears, select “Start a new
project”

2. Pick a working directory, e.g. /var/tmp.

− Repertoire creates a sub directory to put its inter-
mediate results.

3. Specify a path to a CCFinder executable.

− You may optionally pick a minimum token size
(CCFinder’s input parameter). A minimum token
size is the number of lexical token elements that
must be similar between two code fragments to be
identified as code clones.

4. Select a version control system for each project.

− Repertoire currently supports Git or Mercurial
as target version control systems. Alternatively, a
user may provide a directory including pre-extracted
diff-based patches.

5. Select a URL path for each version control repository.

− This is the root directory of the repository for Git
and Mercurial.

6. Select file extensions for C/C++, headers, and Java
files. This step allows users to ignore ported edits in
certain types of files.

7. Select a time period for the project. Repertoire then ex-
tracts diff-based patches for each commit revision within
the time period.

8. Confirm analysis of the given data and then wait for
analysis to complete.

9. When the analysis is complete, check the output file
created by Repertoire in the working directory.

− There will be a pickle file called rep_db.pickle,
which is a file format for Python object serialization
and de-serialization. This is used as an input for
the visualization and analysis step.

C. RUNNING REPERTOIRE
1. Run rep_analysis.py from src/analysis

2. Select the pickle file rep_db.pickle produced from the
previous step and press Next.

3. The GUI provides four analysis views shown in Fig-
ure 3: Porting Frequency View, File Distribution View,
Developer View, and Porting Latency View (Timing Anal-
ysis).

https://github.com/SealLab/RepertoireTool
http://www.ccfinder.net/ccfinderxos.html

Figure 3: Repertoire Analysis Menu

D. PORTING FREQUENCY VIEW
Given the version histories of two projects, this view shows

the extent of edits ported from one project to another over
the available history. This is represented as a line diagram,
where x-axis shows a time line, and the y-axis shows the
average percentage of ported edits with respect to total edits
in diff-based patches. A user may select to see only ported
edits from Project A to B, B to A, or both ways at once.
Figure 4 shows an example of this porting frequency view.
Steps to run this view:

1. Select Porting Frequency in the menu.

2. Select a project: Project 0 orand Project 1

3. Set a time period for analysis.

E. FILE DISTRIBUTION VIEW
This view is a scatter plot where files from Project A is

shown along the x-axis and files from Project B is shown
along the y-axis. A point is plotted at (x,y) if there is an
edit ported from file X to file Y or vice versa. The color
of the dot indicates a ratio of ported edits to total edits.
The darker the color is, the higher density of ported edits.
Figure 5 shows an example. Steps to run this view:

1. Select File Distribution in the menu.

2. By default, this view does not show full file names. A
user can click Display Label option to see the full file
names.

3. When a user click on the point in the diagram, corre-
sponding files names are shown in the bottom.

4. To browse ported code between the selected file pair,
press Display Ported Edit

5. A window will show all ported code fragments between
the two files, along with developer and commit date
information.

6. On selecting any clone from clone list, user can browse
the ported edit. Figure 6 shows an example these last
two steps.

F. DEVELOPER VIEW

Figure 7 shows an example of developer distribution. The
pie chart shows which developers are responsible for what
fraction of the total ported lines. The scatter diagram in this
figure with developers of project 0 in x-axis and developers of
project 1 in y-axis also reflects the interaction pattern of the
developers while porting code. Steps to run the developer
analysis:

1. Select Developer Distribution in the menu.

2. Shows a scatter plot of developer distribution, i.e., a
point is plotted at (x,y) if developers at x port code
written by developer at y, and vice versa.

3. We do not show developers names as label initially, as
it clutters the display. User can see labels however, if
Display Label is pressed.

4. If any point on the diagram is pressed, corresponding
developer names can be seen at the bottom.

5. To see developer’s distribution in a particular project
in the form of pie chart, please select project 0 and/or
project 1 from right hand window. Then press Display
Developer Porting Statistics”

G. PORTING LATENCY VIEW
This analysis shows how long it takes for a patch to be

propagated to the other project on average. Figure 8 an
example of this view. Steps to run this analysis:

1. Select Porting Latency in the menu.

2. Select a project (e.g. Project A or B), and then press
Porting Latency button.

3. A cumulative distribution of the time taken to port
edits from the source to target projects is shown when
pressing Cumulative Distribution.

4. A user may limit the time period to a specific time
period for an in-depth investigation.

Figure 4: Porting Frequency View. The X-axis is a time line and the Y-axis is the percentage of edited lines
in patches ported from other projects.

Figure 5: File Distribution View. A point is plotted for each pair of files with ported edits between them.

Figure 6: The number of ported lines, the corresponding developer, and the dates of the original patch and
the ported patch are shown.

Figure 7: Developer View showing which developers are responsible for what fraction of ported edits.

Figure 8: Porting Latency View showing the cumulative distribution of the time taken to port a patch. A
porting latency is the time between the commit of an original patch and the commit of a ported patch.

	Introduction
	Repertoire Features
	Implementation and Evaluation
	Summary
	References
	Installation
	Populating a Database
	Running Repertoire
	Porting Frequency View
	File Distribution View
	Developer View
	Porting Latency View

